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Abstract. The rapidly improving compute capability of contemporary
processors and accelerators is providing the opportunity for significant
increases in the accuracy and fidelity of scientific calculations. In this
paper we present performance studies of a new molecular dynamics (MD)
potential called SNAP.
The SNAP potential has shown great promise in accurately reproduc-
ing physics and chemistry not described by simpler potentials. We have
developed new algorithms to exploit high single-node concurrency pro-
vided by three different classes of machine: the Titan GPU-based system
operated by Oak Ridge National Laboratory, the combined Sequoia and
Vulcan BlueGene/Q machines located at Lawrence Livermore National
Laboratory, and the large-scale Intel Sandy Bridge system, Chama, lo-
cated at Sandia.
Our analysis focuses on strong scaling experiments with approximately
246,000 atoms over the range 1−122,880 nodes on Sequoia/Vulcan and
40−18,630 nodes on Titan. We compare these machine in terms of both
simulation rate and power efficiency. We find that node performance
correlates with power consumption across the range of machines, except
for the case of extreme strong scaling, where more powerful compute
nodes show greater efficiency.
This study is a unique assessment of a challenging, scientifically rele-
vant calculation running on several of the world’s leading contemporary
production supercomputing platforms.

1 Introduction

Classical molecular dynamics simulation (MD) is a powerful approach for de-
scribing the mechanical, chemical, and thermodynamic behavior of solid and
fluid materials in a rigorous manner [5]. The material is modeled as a large
collection of point masses (atoms) whose motion is tracked by integrating the
classical equations of motion to obtain the positions and velocities of the atoms
at a large number of timesteps. The forces on the atoms are specified by an
inter-atomic potential that defines the potential energy of the system as a func-
tion of the atom positions. Typical inter-atomic potentials are computationally
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inexpensive and capture the basic physics of electron-mediated atomic interac-
tions of important classes of materials, such as molecular liquids and crystalline
metals. Efficient MD codes running on commodity workstations are commonly
used to simulate systems with N = 105 − 106 atoms, the scale at which many
interesting physical and chemical phenomena emerge. For a few select physics
applications, much larger atom counts are required, and these applications have
historically been successfully run on leadership platforms [3, 6, 7, 11]. Quantum
molecular dynamics (QMD) is a much more computationally intensive method
for solving a similar physics problem [9]. Instead of assuming a fixed interatomic
potential, the forces on atoms are obtained by explicitly solving the quantum
electronic structure of the valence electrons at each timestep. Because MD po-
tentials are short-ranged, the computational complexity of MD generally scales
as O(N), whereas QMD calculations require global self-consistent convergence
of the electronic structure, whose computational cost is O(Nα

e ), where α = 2−3
and Ne is the number of electrons. For the same reasons, MD is amenable to
spatial decomposition on parallel computers, while QMD calculations allow only
limited parallelism.

As a result, while high accuracy QMD simulations have supplanted MD in
the range N = 10 − 100 atoms, QMD is still intractable for N > 1000, even
using the largest supercomputers. Conversely, typical MD potentials often ex-
hibit behavior that is inconsistent with QMD simulations. This has led to great
interest in the development of MD potentials that match the QMD results for
small systems, but can still be scaled to the interesting regime N = 105 − 106

atoms. These quantum-accurate potentials require many more floating point op-
erations per atom compared to conventional potentials, but they are still short-
ranged. So the computational cost remains O(N), but with a larger algorithm
pre-factor. This presents both opportunities and challenges in the context of
Petascale computing. On the one hand, achieving good single-node performance
is more difficult; on the other hand, the high compute-to-communication ratio
implies enhanced strong scaling, relative to simpler potentials. In recent years
Quantum Chemistry methods with O(N) scaling have been developed. Similar to
the quantum-accurate classical potentials, they allow the use of leadership class
platforms for small to medium sized problems [4, 13]. Nevertheless, the algo-
rithm pre-factor in these methods is much larger than that of quantum-accurate
potentials, making their use for MD simulation infeasible.

In this paper, we focus our attention on a new quantum-accurate potential
called SNAP. It has been used to model the shear-migration of screw dislocations
in tantalum metal, the fundamental process underlying plastic deformation in
body-centered cubic metals [12]. Unlike simpler potentials the SNAP potential
for tantalum correctly matches QMD results for the screw dislocation core struc-
ture and minimum energy pathway for displacement of this structure. Combining
the accuracy of SNAP with efficient parallel algorithms that work on Petascale
computers has opened the door to truly predictive first principles simulations of
materials behavior at an unprecedented scale. The contributions in this paper
are: (1) an analysis of the available parallelism and optimization opportunities for
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the SNAP computational kernel; (2) description of thread-scalable implementa-
tion strategies for SNAP which achieves high performance on conventional multi-
core CPUs, energy-optimized highly-threaded processors, and high-performance
compute-oriented GPUs; (3) demonstration of SNAP with an unprecedented se-
ries of strong scaling simulations on leadership class supercomputing platforms
with machine comparisons of both simulation rate and energy efficiency.

2 Mathematical formulation of SNAP

The spectral neighbor analysis potential, or SNAP, is based on the common
assumption that energy depends only the local arrangement of atoms in the
material. The idea is to describe the local environment of each atom as an
expansion of its neighbor density in spherical harmonic functions, and use a
combination of the expansion coefficients as the energy contribution associated
with that atom. Typically such an expansion uses the familiar basis of spherical
harmonic functions Y l

m(θ, φ) multiplied with a separate radial part. Bartok et

al. [2] instead chose to map the radial distance r to a third polar angle θ0 and
use 4D hyper-spherical harmonic functions U

j
m,m′(θ0, θ, φ) as the basis for the

expansion of the neighbor density of one atom:

ρ(r) =
∞∑

j=0, 1

2
,...

j∑

m=−j

j∑

m′=−j

u
j
m,m′U

j
m,m′(θ0, θ, φ) (1)

The neighbor density of a central atom i in a particular configuration of atoms
is written as a weighted sum of δ-functions. The sum is over all neighbor atoms
i′ within a cutoff distance Rcut:

ρi(r) = δ(0) +
∑

r
ii′

<Rcut

f(r)wi′δ(r − rii′) (2)

Here rii′ is the 3D vector joining the position of the atoms i and i′. The wi′

coefficients are dimensionless weights that are chosen to distinguish atoms of
different chemical elements, while the central atom is arbitrarily assigned a unit
weight. The function f(r) ensures that the contribution of each neighbor atom
goes smoothly to zero at Rcut. Using this formulation, each expansion coefficient
can be expressed as a discrete sum over the neighbors:

u
j
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The coefficients u
j
m,m′ are complex and not invariant under rotation. Instead

of using them directly in an expression for the energy, the so-called bispectrum
components Bj1,j2,j are used which are calculated as:
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The constants H
j,m,m′

j1,m1,m′

1
,j2,m2,m′

2

are known coupling coefficients, analogous to

the Clebsch-Gordan coefficients for rotations on the 2-sphere. The bispectrum
components Bj1,j2,j are invariant under rotation and real valued. For later usage
it is convenient to now also define the partial sums

Z
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. (5)

The total energy due to the SNAP potential is composed of the N atom energies.
The energy of each atom i is written as a linear sum of the K bispectrum
components

ESNAP =
N∑

i=1

Ei
SNAP = βαi

0
+

K∑

k=1

βαi

k Bi
k, (6)

where αi indicates the chemical element identity of atom i. The βα
k are the

SNAP linear coefficients for atoms of type α, which are obtained by weighted
least-squares linear regression against a large set of quantum calculations. Hence
the problem of generating the inter-atomic potential has been reduced to that
of choosing the best values for the SNAP linear coefficients. The SNAP force on
an atom i can be expressed as a local sum over neighbors:

F
i
SNAP = −∇iESNAP = −

∑

r
ii′

<Rcut

K∑

k=1

β
α

i′

k

∂Bi′

k

∂ri

. (7)

3 Force algorithm and Parallelism in SNAP

The force on each atom due to the SNAP potential is formally given by Equation
7. In order to perform this calculation efficiently, we use a neighbor list, as
is standard practice in the LAMMPS code [8, 10]. This list identifies all the
neighbors i′ of a given atom i. In order to avoid negative and half-integer indices,
we have switched notation from u

j
m,m′ to u

η
µ,µ′ , where η = 2j, µ = m + j, and

µ′ = m′ + j. Analogous transformations are used for H
j,m,m′

j1,m1,m′

1
,j2,m2,m′

2

and

Bj1,j2,j . Also, from this point on we identify the neighbor atom index with j

instead of i′. Finally, boldface symbols with omitted indices such as ui are used
to indicate a finite multidimensional array of the corresponding indexed variable.

Figure 1 gives the resulting force computation algorithm, where calc U(i)
calculates all expansion coefficients u

η
µ,µ′ from (3) for an atom i while calc Z(i,ui)

determines all Zµ,µ′

η1,η2,η as defined in (5). In the inner-loop first the derivatives
of ui with respect to the distance vector between atoms i and j are computed
and then the derivatives of Bi. The most computational expansive part of the
algorithm is calc dBdR(i, j) as given in Fig. 2. For the parameter sets used in this
study, it is responsible for approximately 90% of all floating point and memory
operations. Thus, we concentrate our description on this function.
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Compute SNAP() {
for i in natoms() {

ui = calc U(i)
Zi = calc Z(i,ui)
for j in neighbors(i) {

∇jui = calc dUdR(i, j,ui)
∇jB

i = calc dBdR(i, j,ui,Zi,∇jui)
Fij = −β · ∇jB

i

Fi += −Fij ; Fj += Fij

} } }

Fig. 1. Base algorithm for the SNAP force calculation.

Function Calc dBdR(i, j) {
for (η, η1, η2) in GetBispectrumIndices() {

∇jBη1,η2,η = 0
for (µ = 0; µ ≤ η; µ++ ) {

for (µ′ = 0; µ′ ≤ η; µ′++) {

∇jZ
µ,µ′

η1,η2,η = 0
for (µ1 = max (0, µ + (η1 − η2 − η)/2);

µ1 ≤ min (η1, µ + (η1 + η2 − η)/2); µ1++) {
µ2 = µ − µ1

for (µ′

1 = max (0, µ′ + (η1 − η2 − η)/2);
µ′

1 ≤ min (η1, µ
′ + (η1 + η2 − η)/2); µ′

1++) {
µ′

2 = µ′ − µ′

1

∇jZ
µ,µ′

η1,η2,η += Hη,µ,µ′

η1,µ1,µ′

1
,η2,µ2,µ′

2

(uη1

µ1,µ′

1

∇ju
η2

µ2,µ′

2

+ uη2

µ2,µ′

2

∇ju
η1

µ1,µ′

1

)

} }

∇jBη1,η2,η += (uη

µ,µ′)
∗∇jZ

µ,µ′

η1,η2,η + Zµ,µ′

η1,η2,η(∇ju
η

µ,µ′)
∗

} } } }

Fig. 2. Algorithm for the calculation of the bispectrum component derivatives. Typi-
cally more than 90% of all floating point operations are due to this function.

From these two algorithms it is clear that the overall structure of the force
calculation is a seven-dimensional loop with the innermost loop performing sev-
eral complex number calculations. Fortunately these loops provide a high degree
of parallelism.

The outermost level is a loop over the atoms in a system. Part of that paral-
lelism is used for domain decomposition on an MPI level, but each MPI rank will
typically still handle multiple (and in many classic large scale simulations even
millions) atoms. For the bulk of scientifically relevant simulations the number of
atoms in a system lies in the range of 105 − 106 atoms. The SNAP force calcula-
tion for each central atom i is completely independent of other atoms, assuming
that current valid positions of all atoms have been distributed. In homogeneous
systems, the total computational work for each atom is approximately the same.

The next loop is over the number of neighbors j of each atom i, calculating
the force Fij due to the dependence of Ei

SNAP on the positions of i and j.
For the parameter sets of SNAP so far developed at Sandia (including the ones
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Sets System Atom Interaction Workload Variation

i 1.0×105 N/A N/A Low
i, j 1.6×106 15.5 N/A None
i, j, η1, η2, η 1.0×108 992 64 Large
i, j, η1, η2, η, µ, µ′ 2.1×109 32,528 1,388 Large
i, j, η1, η2, η, µ, µ′, µ1, µ

′

1 2.4×1010 2.4×105 15,183 None

Table 1. Available parallelism for the SNAP potential with the parameter sets for
silicon and tantalum atoms used in this study. Assumed is a system size of 100,000
atoms and the number of unique sets of loop indices corresponding to algorithms is
given for the full system, for an average atom, and for one i, j interaction.

used for the later benchmark runs) the average number of neighbors per atom
is 14.6. For the class of materials targeted by SNAP it is expected that typical
numbers are in the range of 15-50 neighbors per atom. Calculations on different
pairs of atoms i, j are again independent except for a reduction at the end to
accumulate force contributions into Fi and Fj . Note that interactions with the
same central atom i require the same sets of ui and Zi. The computational work
for each interaction is exactly the same for the single chemical element systems
considered in this paper.

Within the function Calc dBdR(i, j) the first loop is over the number of
bispectrum components. For the parameter sets considered here there are 64
coefficients. As was the case on the two outer loops, calculations of different
bispectrum components are essentially independent. After Calc dBdR is finished
a reduction over the bispectrum components takes place to compute Fij . In
contrast to the previous two loops the work for each bispectrum component can
be vastly different due to the complicated dependence of the loop boundaries for
µ, µ′, µ1, and µ′

1
on the specific values of η1, η2, and η.

The next two loops over µ and µ′ perform a reduction to calculate ∇jBη1,η2,η,

where for each pair µ and µ′ a different ∇jZ
µ,µ′

η1,η2,η is calculated through the two
inner loops again as a reduction. The total number of unique sets (η1, η2, η, µ, µ′)
is 1,388 for the SNAP parameter sets used in this study, while the total number
of executions of the innermost loop body is 15,183 for each interaction. With
the number of floating point operations in the innermost loop being 52, a single
interaction requires on the order of 106 operations.

Table 1 provides a summary of the available parallelism. Depending on the
targeted machine architecture different levels of parallelism have to be exploited.
For CPU based architectures, large computer systems have on the order of 106

hardware threads. The largest such supercomputer is Sequoia, an IBM BG/Q
system installed at the Lawrence Livermore National Laboratories in the United
States, with roughly 100,000 nodes. Each node has 16 compute cores with 4
hyperthreads. Combined, this provides about 6× 106 threads. Systems based on
many-core architectures, such as the current Top500 leader Tianhe supercom-
puter, provide on the order of 107 threads. GPU based systems require even
higher concurrency. With the number of threads needed per GPU on the order
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System Nodes Cores Threads Power/Node Perf./Node

Chama 1,230 19,680 39,360 368.8 W 332.8 GFLOP/s
Sequoia/Vulcan 122,880 2.0 × 106 7.9 × 106 80.26 W 204.8 GFLOP/s
Titan 18,688 5.0 × 107 5.4 × 108 439.3 W 1450.8 GFLOP/s

Table 2. Relevant hardware parameters of the platforms used for strong scaling ex-
periments. Data was obtained from the November 2013 Top500 list [1].

of 50,000, large installations such as Titan require a total concurrency on the
order of 109.

Comparing these numbers with the available parallelism in a typical MD
simulation using SNAP, a reasonable estimate is that one needs to parallelize
over interactions (i, j pairs) on CPU and many-core based systems, while GPU
systems require exposure of at least one, potentially two more levels.

In the following we discuss implementation details for CPU and GPU sys-
tems. In both cases we use domain decomposition to parallelize over nodes. All
interactions of a single atom are handled by its assigned node (i.e. we do not
distribute work of the same atom to multiple nodes).

4 CPU Implementation

As discussed in the previous section, it is necessary to parallelize over interactions
in order to use large CPU based installations efficiently for the system sizes we
want to consider. Parallelizing over interactions has a large appeal, since each
interaction requires exactly the same amount of computation. As a consequence,
a static work partitioning of interactions to threads is sufficient. Furthermore,
relatively good load balancing can be expected even if the number of interactions
is very small. The worst case scenario is that there is one more interaction to be
computed on a node, than there are hardware threads.

In order to parallelize over interactions the loops over the atoms i and its
neighbors j have to be flattened. Doing this poses the question of how to handle
the calculation of ui and Zi. We implemented two different approaches: the
shared data algorithm pulls the calculation of those arrays in front, and stores
them for all atoms i in a globally accessible array. The private data algorithm
handles these arrays as thread-private data. They must be computed by each
thread individually each time it encounters an new central atom i. This causes
duplicated calculations if multiple threads work on interactions of the same atom
(i.e. Ni . Nthreads). The shared data algorithm on the other hand requires much
more memory. Together the arrays take about 300 kB per particle 1 , which
means that the whole data set will not fit into the last level cache of typical

1 The Zi array is a five dimensional array whose dimension depends on the chosen
order of the spherical harmonic density expansion. For the parameter sets used in
this this study the dimension is 7. Since Zi are complex values the total amount of
data is thus 75 ∗ 2 ∗ 8 byte ≃ 300kB. The ui array is only three-dimensional and
does significantly affect the total amount of needed memory.
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shared data algorithm

Compute SNAP() {
for i in natoms() {

u[i] = calc U(i)
Z[i] = calc Z(i,u[i])

}
make list of IJ pairs()
parallel for i, j in pairs() {

∇jui = calc dUdR(i, j,u[i])
∇jB

i = calc dBdR(i, j,u[i],Z[i],∇jui)
Fij = −β · ∇jB

i

Fi += −Fij ; Fj += Fij

} }

thread-private data algorithm

Compute SNAP() {
make list of IJ pairs()
parallel for i, j in pairs() {

if(i 6= iold) {
ui = calc U(i)
Zi = calc Z(i,ui)

}
∇jui = calc dUdR(i, j,ui)
∇jB

i = calc dBdR(i, j,ui,Zi,∇jui)
Fij = −β · ∇jB

i

Fi += −Fij ; Fj += Fij

iold = i
} }

Fig. 3. The shared data and thread-private data algorithm of the SNAP force calcula-
tion.

CPUs if there are significantly more than 100 atoms per node. Fortunately, the
private data algorithm performs well in that situation, since interactions of the
same central atom i will usually be handled by the same thread, eliminating the
duplication of calculations.

Figure 4 shows the performance of SNAP running on a dual socket In-
tel Sandy Bridge CPU system with varying number of atoms (blue line). 32
threads have been used (i.e. hyperthreading is enabled). Performance is given
in GFLOP/s which is calculated from runtimes using algorithmic floating-point
operations and average neighbor counts. This means any redundant implementa-
tion calculations for ui are not included. For 64 or more atoms the private data

algorithm has been used. The performance increases with atom count, going
from 21 GFLOP/s at 2 atoms to a peak of 47 GFLOPS/s at 64 atoms, which
corresponds to 30 interactions per thread. This curve sets the limit for what
can be expected in a strong scaling experiment with multiple nodes. When one
applies strong scaling until each node has only 2 atoms, parallel efficiency can
not be expected to be higher than 37%.

It is worth noting that an efficiency of 37% with only two atoms on a node
represents a vast improvement in scalability over commonly used MD simula-
tions. For simple potentials such as Lennard-Jones and EAM, the efficiency at
that point would be less than 1%. A parallel efficiency of 37% is also high enough
that it is not unreasonable to run large scale simulations with as little as 2 atoms
per node. With a simulation rate of 700 timesteps/s this would allow for typical
simulation times of a few million timesteps to finish in a matter of hours.

5 GPU Implementation

For the GPU implementation using CUDA more parallelism than just the total
number of interactions is needed. As a first approach we utilized the shared-

data approach with thread blocks of 64 threads handling an interaction. Each
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thread within a thread block performs the calculation for exactly one bispectrum
component. All temporary data including the per-interaction data is kept in
global memory, since the amount of available shared-memory (48 kB) would only
suffice for a single block with 64 threads. This data is read through the texture
cache, mitigating the performance penalty of the irregular access pattern.

Figure 4 shows that the performance achieved with this initial implemen-
tation (GPU-I) is approximately four times lower than that of the previously
discussed CPU implementation. This might have been expected considering that
this first implementation ignores the fact that for each bispectrum component
a different amount of work has to be performed. As a consequence strong load
imbalances of threads within the same block occur, resulting in many cores be-
ing idle for most of the time. In order to estimate how strong this effect is we
recorded how many innermost loop executions (work items) happen for each bis-
pectrum component. The bispectrum component with the most work executes
the innermost loop 1,369 times, which is 6 times higher than the average number
of executions of 237 times and approximately 9% of the total number of work
items of 15,183.

In order to address this load imbalance it is necessary to expose a finer
level of parallelism. There are 1,388 sets of (i, j, η1, η2, η, µ, µ′) indices with the
highest number of work items for a single set being 49. By grouping multiple
sets together it is possible to organize the work in a way that each thread in a
thread block of up to 320 threads gets approximately 50 work items assigned,
resulting in good load balancing. To facilitate this the algorithm is rewritten
to flatten out the loops of Calc dBdR into a single super-loop. The complete
7 index sets are stored as an array of structs, with each thread looping over a
subset of the complete list. Since each index only goes from 0 to 7 it was possible
to encode the struct into a single 32 bit integer through bit masks. Coefficients
representing a 63rd order expansion of the density could be encoded in a 64
bit integer. By sorting the list appropriately it is possible to make sure that the
innermost reduction to compute ∇jZ

µ,µ′

η1,η2,η is handled by a single thread, so that
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the sum can be performed in a local variable without atomic updates. ∇jBη1,η2,η

on the other hand is updated atomically.

Since with this approach more threads work on a single interaction (up to
320 instead of 64), shared memory can now be used for the temporary data
without restricting the number of active threads. To further increase the number
of active threads this temporary data is also stored in single precision only. Using
this approach it is possible to fit three active blocks with a total of almost 1,000
threads on a single GPU multi-core, which is high enough to provide the on
GPUs necessary latency hiding. Consequently, performance goes up by a factor
of approximately three versus the first implementation, achieving 75% of the
CPU performance.

A detailed profiling analysis shows that the biggest remaining problem are
bank conflicts in shared memory. Looking at the access pattern also reveals that
less than half of the entries in the 7x7x7 temporary arrays are ever accessed.
Indeed given the indices k,l, and m it holds true that l ≤ k and m ≤ k. Conse-
quently only

∑
7

i=0
i ∗ i = 140 will ever be accessed. Using the partial sums it is

possible to calculate compressed offsets into the temporary arrays, thus reduc-
ing the amount of necessary storage and making accesses more dense. The latter
actually reduces the number of bank conflicts. The compression also allows the
implementation to return to using full double precision for the temporary data,
without reducing the number of threads per GPU multi-core. On top of this, a
further reduction in bank conflicts can be achieved by padding the arrays. Since
the access pattern is irregular a brute force method was employed to determine
the most effective padding size, which turned out to be 159. While this size is
specific to the current parameter set using a 7th order expansion, it is trivial
to expand the concept and simply determine for each expansion order the most
effective padding. This could even been done using autotuning. In combination
these two measures improved performance by 50% over the second implementa-
tion, making the GPU faster than the CPU variant.

A further improvement is achieved by merging calc dUdR and calc dBdR
into a single kernel allowing the first part to generate temporary data directly
into shared memory instead of putting it into global memory with the calc dBdR
kernel loading it back into shared memory. One issue here is that calc dUdR does
not expose as much parallelism as calc dBdR. Only 32 threads of a block are
taking part in that calculation, and it was necessary to exploit instruction level
parallelism to keep those threads busy.

We also experimented with the number of threads by making the buckets for
each thread larger or smaller. Experiments showed that 320 threads per block
(the maximum number while still being able to distribute roughly equal work to
each thread) is not the optimal number, and we used 288 instead. At that point
resources on a SM were used almost optimally. The total number of used registers
reaches 62k out of 64k and 47.5 kB of the available 48 kB shared memory are
utilized.

Resulting improvements, denoted as GPU-IV, added 15% to the previous
implementation, reaching 1.47x of the CPU performance. Also shown in Fig. 4
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are results with a NVIDIA K20x GPU which is slightly higher performing than
the previously used NVIDIA K20c GPU. The latter is a workstation product with
active cooling, while the former is intended for server installations and is found
in most large clusters including Titan. The K20x reaches a peak performance of
77 GFLOP/s, or 168% of the peak performance of the dual Sandy Bridge CPUs.
Exposing all this parallelism enables a respectable 25% efficiency with only 2
atoms on a single GPU. Similar to the CPU implementation about 64 atoms per
GPU are required to achieve full performance.

Note that for both CPU and GPU performance is most likely limited by the
irregular memory access in the innermost loop of calc dBdR. There are about
2.5 floating point operations per 8 byte memory load. This means that the K20x
provides an effective bandwidth of about 250 GB/s, while the CPU provides an
effective bandwidth of about 150 GB/s. Those numbers are only possible for
irregular memory access since the work sets are small enough that virtually all
accesses are serviced by cache.

6 Scaling studies

Scaling studies were performed on three systems: Chama, Sequoia/Vulcan, and
Titan all of which are listed in the November 2013 Top500 list (Chama as #
100, Sequoia as # 3, Vulcan as # 9 and Titan as # 2). The same code de-
scribed with the CPU-algorithm was used on Sequoia/Vulcan and on Chama.
Note that in early 2012 Sequoia and Vulcan, which are actually two partitions
of one large BG/Q installation at the Lawrence Livermore National Laborato-
ries, were available as a single system. Our scaling studies were one of the few
successfully performed experiments on the entire installation. We believe that
the strong scaling results we achieved on this system scaling from a single node
to all 122,880 nodes are unique.

For the type of simulations targeted with SNAP, load balancing between
MPI processes is a strong requirement. Even when simulating dense materials,
small local density fluctuations occur. When trying to scale to single atoms per
MPI rank, these small density fluctuations can lead to huge load imbalances.
While LAMMPS has load balancing mechanisms, those are targeted at a much
coarser level. Essentially LAMMPS decomposes a simulation box with planes in
three dimensions. For load-balancing purposes LAMMPS can move those planes
independently. This is an approach which works very well for gradual density
changes in a system. For the type of fluctuations which pose a problem in our
case, this type of load balancing does not work.

To remedy this we implemented a micro load-balancer. Instead of changing
domain boundaries it reassigns responsibility of calculating the force for indi-
vidual atoms. Essentially an MPI rank with more than the average number of
atoms, checks all neighboring domains until it finds one with less than the aver-
age number of atoms. The load balancer then transfers responsibility for a single
atom to that neighbor MPI rank. Consequently a maximum of 26 atoms can
be given away, or received in a single load balancing pass. A major cost of this
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approach is that generally the halo regions have to be twice as large, so that a
MPI rank which receives responsibility to calculate the force of an atom is guar-
anteed to know about the positions of its neighbor atoms. Early experiments
have shown that on GPU based systems this cost is larger than the potential
time savings. On CPU based systems on the other hand a large positive effect
can be observed.

Figure 5 shows the result of a strong-scaling experiment on Sequoia with
65,536 atoms comparing MPI-only and MPI+OpenMP runs with both micro
load-balancing enabled and disabled. For the MPI-only runs 64 MPI ranks per
node were used and two per node with 32 threads each for the MPI+OpenMP
runs. Using two MPI ranks per node instead of one for the threaded runs enables
better utilization of the network resources. Furthermore this means that even
with a single atom per MPI rank most threads will actually have an interaction
to work on.

First it is obvious that the threaded implementation achieves much better
performance than the non-threaded one even for small node counts. Considering
the reduction in communication this is not surprising. Also the fastest runtime
achieved by the MPI-only runs is 64 ms per timestep as compared to 7 ms per
timestep for the OpenMP run with load-balancing. At that point only one in 32
cores actually performs force calculations in the MPI-only runs.

Activating load-balancing improves the runtime of the MPI-only runs. Even
with as little as 64 nodes performance increases by 22%. At that point an MPI
process has only 8 atoms on average, so small fluctuations in density are no-
ticeable. A detailed analysis showed that the load-balancer achieved uniform
distribution of atoms over the MPI ranks. As a consequence, the performance
curve is much steeper, reaching a sharp inflection point at 2,048 nodes, where the
load-balancer has allocated one atom to every second MPI rank. Interestingly,
the inflection point is not at 1,024 nodes, where each MPI rank has 1 atom. This
is because on average only two of the four MPI ranks allocated to each processor
core have an atom to work on. Each active rank therefore has more hardware
resources available. As a result, the performance is improved by up to 1.93x for
the MPI-only case, and by up to 1.70x for the hybrid MPI and OpenMP case.

In order to compare different architectures we run a strong scaling experi-
ment of a system with 245,760 atoms on the three large scale clusters available
to us: Chama, Sequoia/Vulcan and Titan. The particular system size was cho-
sen because it represents a typical small to medium sized system used in many
scientific studies, and it allows us to go to the limit of scaling on Sequoia/Vulcan
with 2 atoms per node (1 atom per MPI rank) at full scale. We ran the same
system size on the other machines to enable direct comparisons. We show both
traditional measures, as well as the power normalized curves because core count
or nodes can be a misleading metric to base a comparison on. A Sequoia/Vulcan
node for example only uses about 80 Watts and has a theoretical peak of about
200 GFLOP/s, while a Titan node requires about 440 Watts and has a theoret-
ical peak of almost 1500 GFLOP/s. Thus we tie the comparison to energy, one
of the two biggest constrains determining super-computer design today (cost,
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Fig. 6. Time for performing a single simulation step with 246k atoms on Se-
quoia/Vulcan, Titan and Chama. On the right the curves have been scaled by power
per node.

the other major constraint, is hard to quantify and dependent on many soft
factors such as exchange rates, rebates inflation etc.). All numbers are based on
the data published in the November 2013 Top500 list [1]. Note that the power
consumption reported in the Top500 list is obtained when running the HPL
LINPACK benchmark, which shares characteristics of our SNAP potential i.e.
floating-point dense calculations utilizing a small working set. The node power
consumption as well as theoretical peak performance are calculated by taking
total system values and dividing by the number of nodes. For power consump-
tion this means that cooling and network energy costs are effectively included
in the node values. For Sequoia/Vulcan we used the power per node data from
Sequoia. All values are listed in Tab. 2.

Figure 6 shows the time per timestep for a strong scaling run with 245,760
atoms. In the left panel time is plotted against number of nodes, while in the
right panel the curves are scaled by power consumption per node. When scaling
out to full system size Titan is about two times faster than Sequoia/Vulcan. Most
of this factor is due to Titan having more atoms per node at full scale (∼ 13
versus 2 on Sequoia/Vulcan). Thus the surface to volume ratio from the domain
decomposition is better and the GPUs are operating in a range where they can
still be filled effectively. This is reflected by the parallel efficiencies which drop
only to about 50% on Titan compared with 14% on Sequoia/Vulcan. Chama is
not large enough to show any significant loss of parallel efficiency for a system
of 246k atoms. Normalizing the performance to power consumption as shown on
the right in Fig. 6 makes the relative energy efficiency much clearer. For small to
medium node counts all three systems are with 20% of each other with respect
to energy efficiency. In this regime Sequoia/Vulcan is actually the most effective
one followed by Titan and than Chama. Only at larger node counts (i.e. less work
per node) Titan is becoming more efficient than Sequoia/Vulcan. The crossover
point is reached at about 200 atoms per GPU.

In Fig. 7 normalized performance in GFLOP/s per node is shown with respect
to a normalized workload in atoms per node in the left panel, as well as the power
normalized curves in the right panel. To get the latter the curves were scaled
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Fig. 7. Normalized performance plotted against normalized workload. In the right
panel values have been scaled by power per node. Two strong scaling runs with different
number of atoms are shown for each system.

by power per node on both axes. In the figure three more runs with smaller
sizes chosen to reach the limit of scaling on the systems are added to the 246k
atom runs. Note how the curves for each machine overlap, which means that
performance per node is mainly determined by the number of atoms per node and
largely independent of the total number of atoms, i.e. very good weak scaling is
achieved. While on a per node basis BG/Q is dramatically slower than Chama or
Titan, it is as efficient as the other systems for large workloads when normalizing
by power consumption. For medium and small workloads Chama and Titan are
up to three times as power efficient, since work is much less spread out in those
systems, reducing the total amount of communication necessary. Note that in
terms of simulation rate Titan achieves its peak performance at 2 atoms/GPU
(roughly 4 atoms/kW). Chama can achieve even higher simulations rate by going
to a single atom per node, or ∼ 1.5 atoms/kW.

7 Conclusion

SNAP is a novel, high-fidelity approach to performing scientifically relevant
atomistic simulations at the intermediate scale of 105 to 106 atoms. In this
paper we have presented implementations of SNAP optimized for a range of
high-performance computing hardware from contemporary multi-core proces-
sors to new energy optimized architectures such as highly threaded CPUs and
compute-oriented GPUs. An efficient micro load-balancing scheme is also pre-
sented which allows strong scaling down to a single atom per MPI rank. We
demonstrate that by performing micro load-balanced, strong scaled simulations
we are able to utilize the entirety of the Titan and Sequoia/Vulcan supercom-
puters - some of the largest leadership platforms currently available. The expe-
riences obtained in developing such an algorithm are a sentinel for many of the
issues which algorithm developers may expect to face at Exascale, particularly
that such systems can efficiently execute higher fidelity algorithms for contem-
porary physics applications where simply increasing the problem size may not
be scientifically appropriate. Finally, we compare the energy efficiency of these
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architectures showing a strong correlation between performance and energy ex-
cept in the limit of extreme strong scaling where more powerful compute nodes,
such at those on Titan, deliver higher energy efficiency.
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